Distributive Lattices with a Generalized Implication: Topological Duality
نویسندگان
چکیده
In this paper we introduce the notion of generalized implication for lattices, as a binary function⇒ that maps every pair of elements of a lattice to an ideal. We prove that a bounded lattice A is distributive if and only if there exists a generalized implication ⇒ defined in A satisfying certain conditions, and we study the class of bounded distributive lattices A endowed with a generalized implication as a common abstraction of the notions of annihilator [6], Quasi-modal algebras [3], and weakly Heyting algebras [5]. We introduce the suitable notions of morphisms in order to obtain a category, as well as the corresponding notion of congruence. We develop a Priestley style topological duality for the bounded distributive lattices with a generalized implication. This duality generalizes the duality given in [5] for weakly Heyting algebras and the duality given in [3] for Quasi-modal algebras.
منابع مشابه
On generalized topological molecular lattices
In this paper, we introduce the concept of the generalized topological molecular lattices as a generalization of Wang's topological molecular lattices, topological spaces, fuzzy topological spaces, L-fuzzy topological spaces and soft topological spaces. Topological molecular lattices were defined by closed elements, but in this new structure we present the concept of the open elements and defi...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملDistributive Envelopes and Topological Duality for Lattices via Canonical Extensions
We establish a topological duality for bounded lattices. The two main features of our duality are that it generalizes Stone duality for bounded distributive lattices, and that the morphisms on either side are not the standard ones. A positive consequence of the choice of morphisms is that those on the topological side are functional. Towards obtaining the topological duality, we develop a unive...
متن کاملPriestley Duality for Many Sorted Algebras and Applications
In this work we develop a categorical duality for certain classes of manysorted algebras, called many-sorted lattices because each sort admits a structure of distributive lattice. This duality is strongly based on the Priestley duality for distributive lattices developed in [3] and [4] and on the representation of many sorted lattices with operators given by Sofronie-Stokkermans in [6]. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Order
دوره 28 شماره
صفحات -
تاریخ انتشار 2011